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Abstract High dimensional model representation method forms an effective divide-
and-conquer method used for the truncated representation of a multivariate function,
having N independent variables, in terms of certain number (<2N ) of less variate
functions. The main aim of this method is not to use all these functions in the repre-
sentation and to obtain an approximation to the given problem. This results in a need
of having a good convergence performance just as it is expected in the other numerical
methods. This work aims to increase the convergence rate of HDMR approximation
by optimizing the weight function, which appears in the method as Prof. Rabitz sug-
gested first, with the help of the perturbation expansion and fluctuationlessness theory.
This work also includes a computational procedure with the help of a testing function
to better understand the steps of the proposed method.

Keywords Optimization · Approximation · Multivariate functions · High
dimensional model representation · Perturbation expansion

1 Introduction

High dimensional model representation method (HDMR), which is used for approx-
imating a given multivariate function through sum of less variate functions, was
proposed by Sobol [1] and has playedan important role in multivariance modelling
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problems for the last twenty years. HDMR is used for different purposes in different
scientific areas such as engineering [2–4], physics [5], chemistry [6]. One of the pur-
poses of using HDMR is basically decomposition of a given multivariate function and
then its utilization at truncations for approximating those functions. Although HDMR
method has the ability to exactly represent a given multivariate function, in general, to
avoid the computational complexity, the scientists prefer to use HDMR as an approxi-
mation method in the literature by taking only a few components of its expansion into
consideration. Thus, we need to obtain an acceptable representation efficient as much
as possible through the HDMR method.

The main task of the HDMR method is to uniquely determine the structures of
the components appearing in the HDMR expansion. To do this, a number of multiple
integrations under amultivariate weight function should be evaluated over a hyperpris-
matic grid. The only user dependent selection is the weight selection in the standard
HDMR method developed by Sobol and then extended by Rabitz [7–9] and Demiralp
[10–12]. Various other scientists have been also working on HDMR [13–16]. Hence,
the performance ofHDMR in approximately representing a givenmultivariate function
is extremely affected by the weight function selection process. A weight optimization
process should be defined for this purpose. This process consists of nonlinear equa-
tions and, to solve these equations, we prefer to use perturbation expansion method
[17,18] in this work to achieve better results than the optimization obtained through
the fluctuationlessness approximation theory [19–21].

It has been noticed that optimizing the weight selection process in HDMR increases
the power of the HDMRbasedmethods in representing amultivariate function. Hence,
themain purpose of thiswork is to develop an alternativemethod to optimize theweight
of HDMR. This new method includes the perturbation expansion method to be used
in solving the optimization equations of the weight selection process.

Since HDMR is used for approximation, the performance level of this approxi-
mation should be measured by using some tools. One possible tool to observe the
convergence of the obtained approximation through HDMR is to use additivity mea-
surers which were defined and utilized first by Demiralp. When we take only the
constant HDMR component into consideration and construct constant HDMR approx-
imation, then the additivity measurer that measures the quality of such representation
is the constancy measurer. The performance of the univariate HDMR approximation
is investigated by looking at the first order additivity measurer. It has the same phi-
losophy for higher variate approximations. In addition, we know from the literature
that these measurers construct a practically well-ordered sequence taking the values
between 0 and 1. If the value of an additivitymeasure becomes very close to 1, it means
that the obtained HDMR approximation is a successful representation for the given
problem. In this manner, the philosophy of weight optimization in this work depends
on making the value of the constancy measurer very close to 1. A value very close to
1 for the constancy measurer will let the values of higher level additivity measurers
much more closer to 1. This results in a well designed optimization process for the
weight of HDMR.

The general structure of the weight function to be optimized is selected from a
sub-space of the considered Hilbert space and is defined as the linear combination of
functions that are the members of an orthogonal basis set spanning that sub-space.
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The optimization process includes nonlinear structures to be solved at the end of the
process and this problem corresponds to an eigenvalue problem. In this work, to solve
these equations perturbation expansion method is used. This method can be used in
various forms in the solution process depending on the needs in details.

One way to construct a perturbation scheme is to use an intermediate entity defined
over a Rayleigh quotient appearing in the equations obtained after constancy maxi-
mization. An appropriately chosen value of this entity is assumed to be most dominant
part of the equation(s) and all other terms are suggested perturbation. The scaling of
these terms by a perturbation parameter leads us to a Neumann type perturbation
scheme. Unfortunately, we have observed that this way does not work well since the
convergence is almost out of control. This approach seemed to be incompatible to
the nonlinearities of the equations. Only very restricted subsets of dominancy values
could be used and enforced us to take so many perturbation expansion terms. This
situation was quite contradictory to the nature of perturbation approximation where
only first few terms are desired to be taken into consideration for practicality reasons.
We abolished this scheme.

The second way we have attempted to progress in was not using an artificial per-
turbation parameter. The deviation in the value of a parameter defined as a Rayleigh
quotient has been considered as perturbation. This needs the determination of inter-
section points of certain mathematical expressions. It takes us to quite comprehensive
iterative procedures and almost blocks out to get analyticity. We have also aborted this
approach.

The third way is based on mathematical fluctuation theory combined with a pertur-
bation scheme. This seems to be working well. This has been kept at the focus of this
work.

The paper is organized as follows. Section 2 includes brief details of the HDMR
method while the Sect. 3 is about the weight optimization process in which the related
relations about the optimization equations are given. The solution of the optimization
equations formulated in Sect. 4 through the perturbation expansion on the structure
of a matrix spectrum is described in the section chapter. Section 5 consists of the
computational procedure with a numerical implementation to show the details of the
proposed method step-by-step. The numerical examples constructed to investigate the
performance of our new method are given in Sect. 6. Finally, the last section includes
the concluding remarks of this work.

2 The HDMR method

A given mutivarite function can be rewritten in terms of less variate functions by using
the following HDMR expansion.

f (x1, . . . , xN ) = f0 +
N∑

i1=1

fi1(xi1)

+
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · · + f1...N (x1, . . . , xN ) (1)
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Here, f0, fi1(xi1) and fi1i2(xi1 , xi2) are called constant term, univariate terms and
bivariate terms respectively. The higher variate terms are named in the similar manner.
If we want to obtain the exact representation for the given multivariate function, we
have to use all the right hand side terms of the equation given in (1). However, this way
is not preferred because of the computational complexity of such evaluations especially
when N grows. Hence, in the literature, the first few terms of HDMR expansion are
used for the approximate representation. Generally, this way results in convergence
problems. Although there exist a few approaches to overcome this problem, we prefer
to develop a weight optimization in this work.

To be able to determine the right hand side terms we can use vanishing conditions
which are first defined by Sobol on the unit interval [0, 1] and under the unit constant
weight function. These conditions can be explicitly given as follows

∫ bik

aik

dxikWik (xik ) fi1...is (xi1 , . . . , xis ) = 0, i1 ≤ ik ≤ is (2)

The weight function, W (x1, . . . , xN ), appearing in the vanishing conditions satisfy
the following relation.

W (x1, . . . , xN )

≡
N∏

i1=1

Wi1(xi1),

bi1∫

ai1

dxi1Wi1(xi1) = 1, xi1 ∈ [
ai1 , bi1

]
, 1 ≤ i1 ≤ N (3)

To uniquely determine the general structures of the right hand side components is
the main task of HDMR based methods. To this end, the first step is to obtain the
general structure of the constant component. Applying an N -tuple integration to the
both sides of the HDMR expansion under the vanishing conditions given in (2) gives
us the following relation for the constant HDMR component

f0 =
∫ b1

a1
dx1 · · ·

∫ bN

aN
dxNW (x1, . . . , xN ) f (x1, . . . , xN ) (4)

The structure of univariate components is determined through N −1-tuple integration
in which the integration on the related independent variable (the argument of the
function) is discarded.

fi (xi ) =
∫ b1

a1
dx1W1(x1) · · ·

∫ bi−1

ai−1

dxi−1Wi−1(xi−1)

∫ bi+1

ai+1

dxi+1Wi+1(xi+1)

× · · ·
∫ bN

aN
dxNWN (xN ) f (x1, ..., xN ) − f0, 1 ≤ i ≤ N (5)

Although we do not want to give more details about the above formula, we emphasize
on that there are some approximants which are defined by making truncation at some
level in HDMR method. These approximants are explicitly given as follows.
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s0 (x1, . . . , xN ) = f0

s1 (x1, . . . , xN ) = s0 (x1, . . . , xN ) +
N∑

i1=1

fi1(xi1)

...

sk (x1, . . . , xN ) = sk−1 (x1, . . . , xN ) +
N∑

i1 ...ik=1
i1<···<ik

fi1...ik
(
xi1 , . . . , xik

)
,

1 ≤ k ≤ N (6)

To investigate the quality of these approximations, the following “Additivity Measur-
ers” are defined

σ0 ≡ 1

‖ f ‖2 ‖ f0‖2

σ1 ≡ 1

‖ f ‖2
N∑

i=1

‖ fi‖2 + σ0

...

σN ≡ 1

‖ f ‖2 ‖ f12...N‖2 + σN−1 (7)

These additivity measurers have the following practically well-ordered structure. In
true mathematical sense equalities should not appear to get well-ordered structure in
this formula. However, for practicality, we may use this expression for our purposes
here.

0 ≤ σ0 ≤ · · · ≤ σN = 1 (8)

3 The weight optimization process

HighDimensionalModelRepresentationmethod uses a finite expansion that expresses
the given multivariate function in terms of less variate functions. Hence, this method
provides us an easy calculation in scientific problems having multivariate functions.
However, the important point in this method is that the number of calculations should
not be increased by using many terms from the expansion. That is, to have low math-
ematical and computational complexity, the HDMR expansion should be truncated at
some level and it is better to have a number (which is as less as possible) of HDMR
components in the truncation which corresponds to an approximate representation
of the given multivariate function. To increase the quality of this approximation, the
weight function optimization process can be performed. Although there may be some
other ways of obtaining better approximation, in this study the constancy measurer is
used in the optimization process and the equations obtained through this process are
solved by using perturbation expansion method.
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To accomplish weight optimization process, we choose the weight function as the
square of a linear combination of the functions which form an orthonormal basis set
spanning a subspace of Hilbert space under consideration. The reason why we use
the square of the whole relation here is to guarantee the positiveness of the weight
function. Because we now have a positive function and this function has the property
that vanishes over the interval of its independent variables at only certain finite number
of points, this function can be said to be a true weight function in mathematical sense.

W (x) =
⎛

⎝
n∑

j=1

α jw j (x)

⎞

⎠
2

(9)

Here α j s are arbitrary parameters and they will be used as the basic unknowns of the
optimization process. In this study, this optimization process will be achieved through
only constancy measurer. Definitely, it is possible to use the other measurers in the
optimization process. However, we know that whenwe push the value of the constancy
measurer to 1, the others also natural ly get much closer to 1. To this end, the relation
for the constancy measurer can be rewritten by using the weight structure given in (9)
as follows.

σ0 =

(
∑n

j=1
∑n

k=1 α jαk

b∫
a
dxw j (x)wk(x) f (x)

)2

∑n
j=1

∑n
k=1 α jαk

b∫
a
dxw j (x)wk(x) f (x)2

(10)

The weight factors appearing in the HDMRmethod supply the integral normalization
condition given as relation (3). That is,

∫ b

a
dx

m∑

j=1

m∑

k=1

α jαkw j (x)wk(x) = 1 (11)

Here, it is emphasized on that w j (x) functions are the elements of an orthonormal
basis set. Hence, the following equation can be written

∫ b

a
dxw j (x)wk(x) = δ jk 1 ≤ j, k ≤ m (12)

If the equation given in (11) is rewritten by using above relation, the following equation
is obtained for the α j parameters.

m∑

j=1

m∑

k=1

α jαkδ jk =
m∑

j=1

α2
j = 1 (13)
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To begin the optimization process, a cost functional has to be defined as follows

J (α1, . . . , αm, λ) =
(∑m

j=1
∑m

k=1 α jαka
(1)
jk

)2

∑m
j=1

∑m
k=1 α jαka

(2)
jk

+ λ

⎛

⎝
m∑

j=1

α2
j − 1

⎞

⎠ (14)

where

a(1)
jk =

b∫

a

dxw j (x)wk(x) f (x), a(2)
jk =

b∫

a

dxw j (x)wk(x) f (x)
2 (15)

The second step for the optimization process is to differentiate the cost functional with
respect to the independent variables, λ and αi s, separately.When this step is conducted
and we set the result of each differentiation to 0, below equations are obtained

m∑

j=1

α2
j = 1 (16)

−2μ
m∑

k=1

αka
(1)
ik + μ2

m∑

k=1

αka
(2)
ik = λαi (17)

where

μ =
∑m

j=1
∑m

k=1 α jαka
(1)
jk

∑m
j=1

∑m
k=1 α jαka

(2)
jk

(18)

The equation given in (17) is an eigenvalue problem. The α parameters appearing in
the equation of this eigenvalue problem are the unknowns that are needed to specify
the optimized weight of HDMR. To determine the values of the α parameters, we
need to obtain the value of μ. The relation (18) which is given for μ also includes
the unknown α parameters and this case corresponds to the solution of a nonlinearly
structured equation. As very well known as solving a nonlinear problem is not an
easy task and to bypass the disadvantages coming from nonlinearity we will use the
fluctuation matrices defined in the fluctuationlessness approximation theory [19–21].
The fluctuation matrices are the matrices whose elements are defined through the
following inner products

Mn( f̂ ) jk = (
w j , f wk

)
, Mn( f̂ 2) jk =

(
w j , f

2
wk

)
, 1 ≤ j, k ≤ n (19)

where the symbols f̂ and f̂ 2 correspond to the algebraic multiplication operators
which multiply their operands by the functions f (x) and f (x)2 respectively.

To this end, Eqs. (17) and (18) are rewritten by using fluctuation matrices. The final
forms of these equations are obtained as follows
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−2μMn( f̂ )α + μ2Mn( f̂ 2)α = λα (20)

μ = αT Mn( f̂ )α

αT Mn( f̂ 2)α
(21)

The final results of this problem will be obtained by applying the perturbation expan-
sion method to the matrix form of these equations. For this purpose, the following
relation can be taken into consideration

Mn

(
f̂ [I − P (n)] f̂

)
= Mn( f̂ 2) − Mn( f̂ )

2 (22)

then the eigenvalue equation given in (20) and the accompanying relation given in
(21) become the following form by using n dimensional fluctuation matrix multiplied
by an ε parameter.

−2μMn( f̂ )α + μ2Mn( f̂ )
2α + εμ2Mn

(
f̂ [I − P (n)] f̂

)
= λα (23)

μ(ε)α(ε)T Mn( f̂ )
2α(ε) + εα(ε)T Mn( f̂ [I − P (n)] f̂ )α(ε) = α(ε)T Mn( f̂ )α(ε)

(24)

Before applying the perturbation expansion method, the expression f λ must be deter-
mined in matrix representation form. To this end, some handy manipulations should
be done. If the Eq. (20) is divided by μ and we use λ instead of λ

μ
, the following

relation is obtained

− 2Mn( f̂ )α + μMn( f̂ 2)α = λα (25)

Afterwards, if the explicit form ofμ given in Eq. (21) is replaced into this relation and
we multiply both sides of this new form from the left by αT , the resulting structure is
obtained as

− αT Mn( f̂ )α = λαTα (26)

Since αTα = 1, the value of λ is found in the following final form

λ = −
(
αT Mn( f̂ )α

)2

αT Mn( f̂ 2)α
= −σ0 (27)

4 Perturbation expansion in the structure of matrix spectrum

The previous sections cover the determination process of the optimization equations
and the construction of inner structures needed to sucessfully complete the solution
process of these equations. This section includes the steps designed to solve the above-
mentioned optimization equations. To do this, the equations given in (23) and (24) are
reconstructed as follows through the perturbation expansion method
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2μ(ε)Mn( f̂ )α(ε) − μ(ε)2Mn( f̂ )
2α(ε) − εμ(ε)2Mn

(
f̂ [I − P (n)] f̂

)
α(ε)

= σ0(ε)α(ε) (28)

μ(ε) = α(ε)T Mn( f̂ )α(ε)

α(ε)T Mn( f̂ )2α(ε) + εα(ε)T Mn( f̂ [I − P (n)] f̂ )α(ε)
(29)

The next step is to define the following relations for α, μ and σ0 by using the pertur-
bation parameter, ε

α(ε) =
∞∑

i=0

αiε
i , μ(ε) =

∞∑

i=0

μiε
i , σ0(ε) =

∞∑

i=0

σ
(i)
0 εi (30)

Here, we need to make these relations approximately finite to be able to use in our
solution process. For this purpose, the first m components of each relation will be
taken into consideration.

α(m)(ε) =
m∑

i=0

αiε
i , μ(m)(ε) =

m∑

i=0

μiε
i , σ0,m(ε) =

m∑

i=0

σ
(i)
0 εi (31)

That is, we have mth order perturbation expansion. It means that m + 1 number of
equations to be solved are obtained. Here, α(m) is a vector, μ(m) and σ0,m are scalars.

When the relations given in (31) are inserted into the relations given in (28) and
(29), m + 1 number equations appear for each relation. Since the aim in perturbation
expansion method is not to select the m value greater than 3 or 4 for practicality
issues, the mentioned number of equations does not bring additional computational
complexity to the proposed method of this work. The obtained equations for relation
(28) are as follows when we take m = 2

2μ0Mn( f̂ )α0 − μ2
0Mn( f̂ )

2α0 = σ
(0)
0 α0 (32)

2μ0Mn( f̂ )α1 + μ1Mn( f̂ )α0 − μ2
0Mn( f̂ )

2α1

−2μ0μ1Mn( f̂ )
2α0 − μ2

0Mn(F̂)α0

= σ
(0)
0 α1 + σ

(1)
0 α0 (33)

2μ0Mn( f̂ )α2 + μ1Mn( f̂ )α1 + 2μ2Mn( f̂ )α0

−μ2
0Mn( f̂ )

2α2 − 2μ0μ1Mn( f̂ )
2α1

−μ2
1Mn( f̂ )

2α0 − 2μ0μ2Mn( f̂ )
2α0 − μ2

0Mn(F̂)α1 − 2μ0μ1Mn(F̂)α0

= σ
(0)
0 α2 + σ

(1)
0 α1 + σ

(2)
0 α0 (34)

where Mn(F̂) ≡ Mn
(
f̂ [I − P (n)] f̂ ). Here, for simplicity, we select them value as 2

to show the general characteristics of the obtained perturbation equations. Constancy
measurer for each eigen-pairs by using first order perturbation expansion

The similar steps are applied to the relation (29) and the following equations are
obtained
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μ0α0
T Mn( f̂ )

2α0 = α0
T Mn( f̂ )α0 (35)

μ0α0
T Mn( f̂ )

2α1 + μ0α1
T Mn( f̂ )

2α0 + μ1α0
T Mn( f̂ )

2α0 + α0
T Mn(F̂)α0

= α0
T Mn( f̂ )α1 + α1

T Mn( f̂ )α0 (36)

μ0α0
T Mn( f̂ )

2α2 + μ0α1
T Mn( f̂ )

2α1 + μ0α2
T Mn( f̂ )

2α0 + μ1α0
T Mn( f̂ )

2α1

+μ1α1
T Mn( f̂ )

2α0 + μ2α0
T Mn( f̂ )

2α0 + α0
T Mn(F̂)α1 + α1

T Mn(F̂)α0

= α0
T Mn( f̂ )α2 + α1

T Mn( f̂ )α1 + α2
T Mn( f̂ )α0 (37)

The unknowns are α0, α1, α2, μ0, μ1, μ2, σ
(0)
0 , σ (1)

0 and σ
(2)
0 in these equations. To

determine these unknowns, first, the equations given in (32) and (35) are taken into
consideration. To solve these equations it is assumed that the fluctuation matrix, Mn ,
having n × n type satisfies the following eigenvalue problem

Mn( f̂ )gi = γi gi 1 ≤ i ≤ n (38)

where γi s are the eigenvalues and gi s are the corresponding eigenvectors of Mn . Since
the vector α0 is equal to one of the eigenvectors, gi (1 ≤ i ≤ n), these eigenvectors
can be used in Eq. (35) to determine the unknown μ0

μ0gi T γ 2
i gi = gi T γi gi (39)

where gi T gi = 1.

μ0γ
2
i = γi → μ0 = 1

γi
, 1 ≤ i ≤ n (40)

Hence μ0 is found as it is equal to multiplicative inverse of one of the eigenvalues of
matrix Mn( f̂ ). Afterwards, if μ0 and α0 are placed into Eq. (32), the value of σ

(0)
0

is obtained as 1. This results in as follows when we also take the relation (31) into
consideration

2
1

γi
γi gi − 1

γ 2
i

γ 2
i gi = σ

(0)
0 gi → σ

(0)
0 = 1 → σ0,0 = 1 (41)

Other unknowns can be found by following the same steps. The values of σ
(1)
0 and μ1

are determined from the above Eqs. (33) and (36) respectively

σ
(1)
0 = − 1

γ 2
i

gi T Mn( f̂ )gi (42)

μ1 = − 1

γ 2
i

gi T Mn( f̂ )gi (43)

To be able to determine the unknown vector α1, the Eq. (33) has to be rewritten as
follows
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α1 =
(
2

γi
Mn( f̂ ) − 1

γ 2
i

Mn( f̂ )
2 − I

)−1 (
1

γ 2
i

Mn(F̂)gi − 1

γ 2
i

gi T Mn(F̂)gi gi

)

(44)

Here, we have to find the inverse of

(
2
γi
Mn( f̂ ) − 1

γ 2
i
Mn( f̂ )2 − σ

(0)
0 I

)
to evaluate

α1. For this purpose, the following relation is taken into consideration

(
2

γi
Mn( f̂ ) − 1

γ 2
i

Mn( f̂ )
2

)
gk = βkgk, I =

n∑

k=1

gkgk
T , gk

T gk = 1 (45)

where k = 1, . . . , n.

The pseudo-inverse of the expression,

(
2
γi
Mn( f̂ ) − 1

γ 2
i
Mn( f̂ )2 − σ

(0)
0 I

)
is

obtained as

(
2

γi
Mn( f̂ ) − 1

γ 2
i

Mn( f̂ )
2 − σ

(0)
0 I

)−1

d

=
n∑

j=1
j �=i

1

(β j − 1)

[
1

γ 2
i

g j
T Mn(F̂)gi

]
g j g j

T

(46)
This result is used in Eq. (44) the vector α1 is obtained as follows.

α1 =
N∑

j=1
j �=i

1

(β j − 1)γ 2
i

(
g j

T Mn(F̂)gi
)2

g j (47)

If we solve the equation given in (37), the value of σ
(2)
0 is obtained as

σ
(2)
0 = 3μ2

1γi − 1

γ 2
i

gi T Mn(F̂)α1 − σ
(1)
0 gi Tα1 (48)

Now, to determine the vector α2, the Eq. (37) is used.

α2 =
N∑

j=1
j �=i

1

(β j − 1)γ 2
i

(
g j

T Mn(F̂)gi
)
g j

×
[

1

γ 2
i

g j
T Mn(F̂)α1 + 2

γi
μ1g j

T Mn(F̂)gi + σ
(1)
0 g j

Tα1

]
(49)

If all obtained results are inserted into (31) and the ε parameter is set equal to 1, we
produce results for a nonlinear problem by using second order perturbation expansion.

The next section covers a computational procedure through univariate functions for
better understanding the algorithm.
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5 The computational procedure

In the previous section, the theoretical details about how the weight optimization
process is performed through constancy measurer with the help of perturbation expan-
sion, to increase the quality of HDMR method, is given. In this section, to make the
method more clear, the steps of this proposed method are given through a numerical
example.

The inputs of the algorithmare the interval information of each independent variable
and the analytical structure of a given function.

The output of the algorithm is an approximate analytical structure which represents
the original function in terms of HDMR components. The proposed method of this
workusesfluctuation freematrix representations and the perturbation expansion theory
to determine the appropriate HDMR components for the given problem in which a
better representation is obtained with respect to the method in which the plain HDMR
method is used for the purpose.

The numerical example selected to describe the steps of our new method is as
follows

f = √
x + 1, −1 ≤ x ≤ 1 (50)

This example is same as it is selected in the other related published paper of the authors
to easily compare the performance of the proposed method of this work and the other
method given in that work [19].

The steps of this new algorithm are given as follows:

1. Evaluate the fluctuation matrix of the given function.
– Choose the dimension of the matrix and the basis set needed to construct the
components of this matrix. Here, the dimension and the elements of the basis
set are chosen as n = 3 and {1, x, x2} respectively. The elements of this basis
set should bemutually orthonormal. This can be provided by using theGramm-
Schmidt Orthonormalization Method [22]. The elements of this basis set has
the following structures for n = 3 after the mentioned orthonormalization on
the given basis set

w1(x) =
√
1

2
, w2(x) =

√
6x

2
, w3(x) = 3

√
10

(
x2 − 1

3

)

4
(51)

2. Determine the eigenvalues, γi , and the corresponding eigenvectors, gi , by using
eigen-equation given in (38)

γ1 = 1.327669153, γ2 = 0.9771259876, γ3 = 0.4207800884 (52)

g1 =
⎡

⎣
0.539066018
0.7167974794
0.4422772905

⎤

⎦, g2 =
⎡

⎣
0.6816365406

−0.06282368898
−0.7289888961

⎤

⎦,

g3 =
⎡

⎣
0.4947519123

−0.6944455037
0.52246147

⎤

⎦ (53)
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where α0[1] = g1, α0[2] = g2 and α0[3] = g3.
3. Evaluate σ

(0)
0 and σ

(1)
0 by using (41) and (42) respectively. We know from (41)

that the value of σ (0)
0 is independent from the problem and is equal to 1. The values

of σ
(1)
0 for each eigenvalue are obtained as follows

σ
(1)
0 [1] = −0.0061793943, σ

(1)
0 [2] = −0.04511730997,

σ
(1)
0 [3] = −0.2908358637 (54)

where σ
(1)
0 [1], σ

(1)
0 [2] and σ

(1)
0 [3] are obtained for the first, second and third

eigenvalues respectively.
4. Determine the value of constancy measurer, σ0,1, for each eigenvalue by using the

relation (31) and σ
(1)
0 [1], σ (1)

0 [2], σ (1)
0 [3] values.

σ0,1[1] = 0.9938206057, σ0,1[2] = 0.95488269, σ0,1[3] = 0.7091641363

(55)

5. Evaluate the α1 vectors. For this purpose, βk values should be obtained by
using the relation (45). Here, each γi produces n × n dimensional matrix,(

2
γi
Mn( f̂ ) − 1

γ 2
i
Mn( f̂ )2

)
, so there are nxn number of β values. If we use these

values and Eq. (47), we obtain n number of α1 vectors.

α1[1] =
⎡

⎣
−0.002928938227
0.0007020365019
0.002432123682

⎤

⎦, α1[2] =
⎡

⎣
−0.01378934274
0.005855699862
0.007316711143

⎤

⎦,

α1[3] =
⎡

⎣
−0.006411619398
0.002682877239
0.003466618179

⎤

⎦ (56)

6. Compute the σ
(2)
0 values by using the vectors, α1, and the relation (48).

σ
(2)
0 [1] = 0.0001140984, σ

(2)
0 [2] = 0.0056209228, σ

(2)
0 [3] = 0.1049092968

(57)
7. Obtain theσ0,2 value by using the relation given in (31). This value is the constancy

measurer obtained through the secondorder perturbation expansionmethod.There
will again be 3 values since the dimension is selected as 3.

σ0,2[1] = 0.9939347041, σ0,2[2] = 0.9605036128, σ0,2[3] = 0.8140734331
(58)
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8. Evaluate the α2 vectors by using the relation (49).

α2[1] =
⎡

⎣
0.000134137577

−0.0001672080584
0.0001075011229

⎤

⎦, α2[2] =
⎡

⎣
0.0008996021449
−0.001178910148
0.0008141835096

⎤

⎦,

α2[3] =
⎡

⎣
0.002345385423

−0.003032173772
0.002055581319

⎤

⎦ (59)

9. Identify the eigenvector that maximizes the constancy measurer evaluated in step
7. Depending on the results given in (58), this vector is the first eigenvector for
the numerical example under consideration.

10. Evaluate the weight parameter, α by taking the result of the step 9 and the relation
(31) into consideration.

α = α0[1] + α1[1] + α2[1] 
⇒ α =
⎡

⎣
0.5362712174
0.7173323079
0.4448169153

⎤

⎦ (60)

11. Construct the optimized weight function by using the relation given in (9), the
abovementioned vector, α and the elements of the basis set given in (51).

Wopt = (1.054975946x2 + 0.878549065x + 0.02754236584)2 (61)

12. Evaluate the constant HDMR component of the given function through this opti-
mized weight.

f0 = 1.327683266 (62)

6 Implementations

This section covers several implementations to investigate the performance of the
proposed method of this work. The numerical results are obtained by using MuPAD
[23], a computer algebra system, within 10-decimal-digits precision.

The first testing function is selected as exponential function

f1(x) = ex , −1 ≤ x ≤ 1 (63)

and the number of elements of basis set is chosen as 10. This results in using a 10 ×
10 fluctuation matrix. This means that, we obtain 10 eigenvalues and corresponding
eigenvectors. When we follow up the steps given in the previous section, we can
evaluate constancy measurers obtained through the first and second order perturbation
expansion respectively. Table 1 includes these constancy measurer values for each
eigenpair of the fluctuation matrix. The value of σ0,0 is 1 which comes from the theory
of the method as mentioned before. Here, we need to select the eigenpair which
gives the maximum value for the constancy measurer obtained through second order
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Table 1 Constancy measurer values obtained for the eigenpairs of the first testing function

Eigenpairs #

1 2 3 4 5 6 7 8 9 10

σ0,0 1 1 1 1 1 1 1 1 1 1

σ0,1 0.9984 0.9919 0.9810 0.9675 0.9542 0.9455 0.9459 0.9578 0.9775 0.9950

σ0,2 0.9985 0.9922 0.9827 0.9719 0.9610 0.9540 0.9496 0.9651 0.9746 0.9955

Table 2 σ0 values for optimized and unoptimized weight functions (n = 9)

Testing functions 1 − x2 (1 + x)2ex sin(x)
√
1 + x ln

(
1 + x

2
)

σ0
(
W := 1

2
)

0.8333 0.4002 0 0.8888 0.0211

σ0 (previous optimized weight) 0.9743 0.9950 0.9970 0.9996 0.9960

σ0 (new optimized weight) 0.9978 0.9974 0.9977 0.9997 0.9968

perturbation expansion. The first eigenpair gives the highest constancy measurer value
and it is highlighted as in Table 1. Next step is to use the first eigenvector to determine
the optimized weight and this optimized weight function is obtained as follows

Wopt = (35.14911413x9 + 30.53700573x8 − 53.38744191x7 − 44.16006669x6

+25.33028634x5 + 19.18029593x4 − 4.048023674x3 − 2.533398576x2

+0.1476361084x + 0.04821945896)2 (64)

The constant HDMR component can be evaluated by using the abovementioned opti-
mized weight function.

The following testing functions are defined to compare the performance of two
methods, one is the proposedmethod of this studywhile the other is theHDMRmethod
with optimized weight through the fluctuationlessness approximation method.

f2(x) = 1 − x2

f3(x) = (1 + x)2 ex

f4(x) = sin (x)

f5(x) = √
1 + x

f6(x) = ln
(
1 + x

2

)
(65)

Tomake the comparison between the abovementioned two differentmethods, the value
of n should be the same, that is, n value is taken as 9.

Table 2 contains the constancy measurer values obtained through a constant weight
as unoptimized weight and two different optimized weights one comes from the
method given in Tunga and Demiralp [20], and the other comes from our newmethod.
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The values of Table 2 show us that the optimizedweight obtained through the proposed
method of this work has the best performance.

7 Conclusion

Dealingwithmultivariate functions in scientific and engineering problems is extremely
difficult. To overcome the difficulties, one way is to decompose the given multivariate
problem into a number of less variate problems. This decomposition stands for divide-
and-conquer philosophy and there exist various methods based on this philosophy.
One of them is the High Dimensional Model Representation method. This method is
given through a finite expansion in which a given multivariate function is rewritten
by summation of a constant term, a number of univariate terms, another number of
bivariate terms and so on. That is, a given multivariate function having N independent
variables is represented by the summation of 2N less variate functions which means
that an exact representation of the given multivariate function is obtained when all
components are used from the HDMR expansion.

The main disadvantage of the method is to have a huge number of components
to be determined while the number of independent variables of the given problem
increases to big values. To avoid an increase in computational and mathematical com-
plexities we generally truncate the HDMR expansion at some level, say at the level
of bivariate terms, and obtain an approximation to the given analytical structure. This
results in a new problem that we should obtain acceptable approximations to represent
the multivariate structure successfully. Investigating the HDMR algorithm carefully
gives us the idea that optimizing the weight of the method provides to obtain bet-
ter approximations. HDMR’s weight optimization process was first proposed by the
authors in another work [19] by using only the fluctuationlessness approximation the-
ory. This work proposes a new method for weight optimization in HDMR to increase
the performance of the approximations obtained through HDMR by using, this time,
perturbation expansion method with the fluctuationlessness approximation theory.
Numerical implementations show us that the weight optimization through the method
offered in this manuscript gives the best approximations to the given problems when
we compare our newmethodwith an unoptimized version and the one that is optimized
through the mentioned previous method which includes only the fluctuationlessness
approximation theory. That is, the method proposed in this work takes the weight
optimization philosophy a step forward and provides a more flexible algorithm such
that when higher order perturbation expansions are used, better approximations can
be obtained while at most the second order perturbation expansion is used here.
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7. H. Rabitz, Ö. Alış, General foundations of high dimensional model representations. J. Math. Chem.
25, 197–233 (1999)
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